The Osteogenic Differentiation Effect of the FN Type 10-Peptide Amphiphile on PCL Fiber

نویسندگان

  • Ye-Rang Yun
  • Hae-Won Kim
  • Jun-Hyeog Jang
چکیده

The fibronectin type 10-peptide amphiphile (FNIII10-PA) was previously genetically engineered and showed osteogenic differentiation activity on rat bone marrow stem cells (rBMSCs). In this study, we investigated whether FNIII10-PA demonstrated cellular activity on polycaprolactone (PCL) fibers. FNIII10-PA significantly increased protein production and cell adhesion activity on PCL fibers in a dose-dependent manner. In cell proliferation results, there was no effect on cell proliferation activity by FNIII10-PA; however, FNIII10-PA induced the osteogenic differentiation of MC3T3-E1 cells via upregulation of bone sialoprotein (BSP), collagen type I (Col I), osteocalcin (OC), osteopontin (OPN), and runt-related transcription factor 2 (Runx2) mitochondrial RNA (mRNA) levels; it did not increase the alkaline phosphatase (ALP) mRNA level. These results indicate that FNIII10-PA has potential as a new biomaterial for bone tissue engineering applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Osteogenic Differentiation and Mineralization on Compact Multilayer nHA-PCL Electrospun Scaffolds in a Perfusion Bioreactor

Background: Monolayer electrospun scaffolds have already been used in bone tissue engineering due to their high surface-to-volume ratio, interconnectivity, similarity to natural bone extracellular matrix (ECM), and simple production. Objectives: The aim of this study was to evaluate the dynamic culture effect on osteogenic differentiation and mineralizationi into a compact cellular multilayer ...

متن کامل

The effect of electrospun poly(lactic acid) and nanohydroxyapatite nanofibers’ diameter on proliferation and differentiation of mesenchymal stem cells

Objective(s): Electrospun nanofibrous mats of poly(lactic acid) (PLA) and nanohydroxyapatite (nano-HA) were prepared and proliferation and differentiation of mesenchymal stem cells on the prepared nanofibers were investigated in this study. Materials and Methods: PLA/nano-HA nanofibers were prepared by electrospinning. The effects of process parameters, such as nano-HA concentration, distance, ...

متن کامل

Preparation and investigation of polylactic acid, calcium carbonate and polyvinylalcohol nanofibrous scaffolds for osteogenic differentiation of mesenchymal stem cells

Objective(s): In this study, the effect of electrospun fiber orientation on proliferation and differentiation of mesenchymal stem cells (MSCs) was evaluated. Materials and Methods: Aligned and random nanocomposite nanofibrous scaffolds were electrospun from polylactic acid (PLA), poly (vinyl alcohol) (PVA) and calcium carbonate nanoparticles (nCaP). The surface morphology of prepared nanofibrou...

متن کامل

Immobilizing osteogenic growth peptide with and without fibronectin on a titanium surface: effects of loading methods on mesenchymal stem cell differentiation

In this study, to improve the osseointegration of implants, osteogenic growth peptide (OGP) and fibronectin (FN) were loaded within mineral, which was formed on titanium, through adsorption and coprecipitation methods. The release profiles of OGP loaded by either adsorption or coprecipitation and the effects of the loading methods to immobilize OGP with and without FN on rat mesenchymal stem ce...

متن کامل

Nanoclay-enriched poly(ɛ-caprolactone) electrospun scaffolds for osteogenic differentiation of human mesenchymal stem cells.

Musculoskeletal tissue engineering aims at repairing and regenerating damaged tissues using biological tissue substitutes. One approach to achieve this aim is to develop osteoconductive scaffolds that facilitate the formation of functional bone tissue. We have fabricated nanoclay-enriched electrospun poly(ɛ-caprolactone) (PCL) scaffolds for osteogenic differentiation of human mesenchymal stem c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2018